15403962

【文系数学】偏差値60を取って国公立文系に合格するための勉強法

はじめに

国公立文系志望のあなた、数学に苦しめられてはいませんか?
文系の学生の中には、数学が苦手な人はやはり多いです。それなのに国公立の入試ではセンターのみならず2次まで数学の試験があると、「私立にすればよかった...」なんて思ってしまいますよね。
しかも文系だからといって数学の配点が低いわけでもなく、数学が2次試験にあるほとんどの文系学部では国語や英語なみの配点がされています。

ですが、裏を返せば、数学ができる文系はものすごく有利ということでもあります。
数学は、正しい勉強法で勉強すれば必ず点数がついてくる教科です。この記事で紹介する勉強法を実践して数学を得意科目にし、ライバルたちに差をつけましょう!

文系数学とは?

15377951

文系数学って何?理系数学と何が違うの?というあなたのために、ここでは、そもそも文系数学とは何なのかについて説明します。

理系数学となにが違う?

大学受験における文系数学と理系数学の違いは、ずばり「範囲」です。現在、高校数学は数1、数A、数2、数B、数3の5つに分類できますが、このうち、文系数学は数1、数A、数2、数Bの4つのみを扱い、理系数学は5つすべてを扱います。
つまり、文系数学と理系数学の違いは「数3をやるか否か」です。

<参考>

http://www.mext.go.jp/component/a_menu/education/micro_detail/__icsFiles/afieldfile/2012/06/06/1282000_5.pdf

だからといって難易度が低いわけではありません。数1A2Bに関しては理系並みの問題が出題されるわけですから、理系の人が文系数学の問題を解けないことも多々あります。しっかり対策しましょう。

出題傾向

大学受験において、全大学の全学部共通で、文系数学の中でも出やすい分野があるかというと、それはありません。ただし、大学単位なら、出題される分野がかなり定まっている大学もあります。
たとえば、一橋では整数と確率は毎年出題されるため受験生にとって対策必須の分野ですし、東大では、偶数回の場合と奇数回の場合で確率が変わるという問題がよく出ます。
このように、自分の志望大学の出題傾向を知ることは非常に大切です。早いうちに調べておきましょう。

教科書・参考書を読むときに

15377971

ここでは、単元の学習の最初に「教科書を読む」ときの、正しい読みかたをお伝えします。

公式は暗記しようとしない

公式は暗記するものではありません。自分で導くものです。
教科書や参考書には、公式の導き方が説明されているかと思います。それを頭に叩き込みましょう。
そうすることで、公式を忘れても自分で導くことができるほか、応用問題にも対応できるようになります。
問題を解くたびに証明から始めるのはさすがに時間の無駄なので、慣れてきたら公式を証明なしで使ってもかまいませんが、それでも聞かれたら答えられるようにはしておきましょう。

手を動かしながら読む

目だけ動かして教科書や参考書を読んでいませんか?高校数学は複雑で、頭のなかだけで処理するのは難しいです。単に読むでは内容が頭から滑り落ちてしまいます。
大事なところにマーカーを引いたり、証明は自分でも書きながら読むなど、手を使いながら読むと定着度が一気に上がります。教科書が汚くなる…と思うかもしれませんが、案外汚いほうが覚えやすかったりするのです。
また、手を使うだけでなく、音読も効果的でしょう。

わからないことを放置しない

公式の証明がわからなかったら、高校の先生や友人など、周りの人に聞きましょう。
「よくわかんないからぜんぶ丸暗記しとこ!」はやめてください。そうやって丸暗記すると、覚えることはできても使うことができず、結局点数は取れません。
「公式を使わないと解けない問題なのに、公式を忘れてしまった」という状況でも、問題を最後まで自力で解けるようになるのが目標です。

基本問題を解くときに

15377967

教科書・参考書を読んだら、次はその単元の基本問題を解きます。ここでの基本問題とは、「1つの単元のみで解ける問題」を指します。教科書に、公式の証明のあとに載っている問題のイメージです。
それでは、基本問題を解く際の勉強法をお話しします!

教科書・参考書と基本問題は交互に

この記事では便宜上、教科書・参考書と基本問題で記述を分けていますが、実際は教科書で1単元終わったら基本問題はその単元のものを解き、それが終わったら教科書では次の単元を読む、というように進めていってください。
数学は単元の積み重ねです。1つの単元の理解があやふやな状態で次に行っても、次の単元の理解まであやふやになってしまいます。教科書と基本問題で1つの単元を理解したあとに、次の単元に進むというペースを保ってください。

公式は毎回証明しよう

さきほど述べたように、公式の証明はいつでもできるようにしておかなければなりません。それには、教科書や参考書の説明文を何度も読むよりも、基本問題の中で公式を使うたびに、証明から始めるようにするのが一番です。
「もうさすがに公式もその証明も暗唱できる!」という状態になるまで、問題を解くときは公式を証明するところからはじめてください。

1周やれば十分って思っていませんか?

教科書・参考書の説明を覚えて、基本問題を解いたらもうその単元は終了と思っているあなた。
人間の記憶力はそこまで優秀ではありません。次の単元を終えるころには、たぶん前の単元についてはほとんど覚えていないはずです。そして、そのまま応用問題に進んでしまうと「公式、全然覚えてない…!」「公式は思い出せるけど使い方がわからない…」などと、まったく問題が解けない状況に陥ってしまいます。

一度基本問題まで終わった単元も、定期的に見返すようにしましょう。
ただ、最初から全部やり直す必要はありません。一週間ごとに基本問題を見返して、一度見ただけではよくわからない問題があったら教科書を読んだり解きなおしたりする、という程度で十分です。

応用問題を解くときに

15377969

基本問題が終わったら、次は応用問題です。この応用問題とは、「複数の単元を使わないと解けない問題」を指します。入試問題はこちらがほとんどで、たとえば「2次方程式の問題だけどベクトルも使って解く」といった問題が出題されたりします。
すべての科目において、成績を伸ばす基本的な方法は「間違えた原因を突きとめ、対策を考え、実行する」です。この3ステップを回していけば、「応用問題は、解答を見ても何をやっているのかさっぱりわからない…」というあなたでも、数学の点数を上げることができます。
では、この3ステップとは具体的に何なのか説明します!

自分のミスを分析しよう

まず、問題で間違えたときは、その原因を分析することが必要です。

計算ミスなどの単純なミスの場合、単に「計算ミス」で終わらせるのではなく、もう一歩踏み込んで考えましょう。数字を見間違えたのか?公式の数値を間違えたのか?式が膨大になって見にくかったのか?ミスはミスでも、色々なケースがあるはずです。

単純なミスではなく、「何をすればいいのかまったくわからなかった…」「途中までは合ってたけど、この式で行き詰ってしまった…」という場合は、「応用問題は基本問題の組み合わせ」ということを思い出してください。
模範解答を丁寧に見ていけば、「最初はベクトルを使っていて、次に2次方程式が出てきて…」というように、様々な単元の基本問題が合わさって応用問題を構成していることがわかるはずです。
そして、単元と単元のつながりには必ず理由があります。上の例で言うと、模範解答でベクトルを使っていたのに2次方程式を使い始めたのは、解答を作った人がなんとなくひらめいたからではなく、「解の方程式を使わないとxが求められないから」といった、何か論理的な理由があるということです。
あなたが応用問題を解いていて、何をすればいいのか全くわからなかった、途中からどうすればいいのかわからなくなった、という場合は、このつながりを思いつくことができなかった可能性が高いです。
模範解答を分析し、「ここはなぜこの単元が使われているのか?」ということをじっくり考えることが、あなたがミスした原因をつきとめることにもつながります。

自分のミスを集めたノートをつくろう

自分のミスを分析した後は、そのミスと、再発防止のための対策を1冊のノートに書いていきましょう。
「式が長くなると写し間違いが起きる→式は左端を揃えて書く!」
「解の方程式を使うことを思いつかず、xの式を立てただけで終わってしまった→文字式にして解くということを忘れない!」
というように、あなたのミスを集め、対策案を書いたあなた専用のノートを作ってください。

ミスを記録していくことで、あなたが犯しやすいミスが明らかになる上に、テスト前などに見返すことで、そのテストで対策を実行することができ、同じミスを繰り返す可能性を下げることができます。
分析結果をまとめて残しておき、それを何度も読み返すこと、これが数学の成績を上げるポイントです!

問題集は完全に潰そう

以上で紹介したやり方を実践しても、演習量が少なければ対策を完全に身に染み込ませることはできません。無意識のうちに対策を実践できるレベルまで、問題をやりこむ必要があります。

わたしは高3のとき、まず数学の問題集を2周したのですが、そのあと塾で始まった毎週のテストであまり点を取れませんでした。「どうして点が取れないんだろう?」と考えたところ、その問題集に載っていて家では解けた問題でも、テストになると途端に解法を忘れてしまうことに気が付きました。それでは問題集を潰せたとはいえません。
そこで、その問題集をさらに2周回し、問題を見た瞬間何も考えなくても解法と答えが浮かんでくる状態にしたところ、テストの点は安定し、本番でも良い点を取ることができました。

たくさんの問題集に手を出すよりも、1つの問題集を完全に潰すのが効果的です。問題を見たら解法が思い浮かぶレベルまで何度でも解き直しましょう。

過去問を解くときに

15377997

さて、最後の仕上げは過去問です。ここでは、2次試験の過去問を解く時に気を付けることを説明します。

いつやりはじめるべき?

結論から言うと、2次試験の数学の過去問を解き始めるのはセンター後でかまいません。
秋頃に問題の傾向を知るために1、2度解いてみるのはよいと思いますが、それよりかは基礎を固め、問題集を潰すことに集中すべきです。
12月に入ってからは始めてもよいと思いますが、すぐセンターが迫ってきます。センターが危ういようでしたらそちらに注力したほうがよいと思います。
センター後は科目が減り、意外と時間ができます。そこから始めても間に合うでしょう。

何年分やるべき?

年数については多めにやって損はないと思います。時間配分や問題の傾向は解けば解くほどつかめてくるからです。
目安としては10~15年分くらいでしょう。最初から安定して点が取れるようでしたらもう少し少なくてもかまいません。

過去問は2度と出ない問題?

よくある誤解が、「過去問はもう2度と出ない問題だからあんまりやらなくていい」というものです。
たしかに細かな数値まで同じ問題は絶対に出ませんが、解き方が同じ問題は何度も繰り返し出題されることがほとんどです。なので、過去問も問題集と同じように完全に潰すべきです。
「過去問10年分なら、見れば答えが浮かぶ!」
この状態で本番に臨みましょう。

最後に

ここまで、「教科書を読む」「基本問題を解く」「応用問題を解く」「過去問を解く」という、4つの段階それぞれにおける勉強法を説明してきました。
ポイントは「公式は説明できるようにする」「『間違えた原因を突きとめ、対策を考え、実行する』の3ステップを回す」「過去問はセンター後から潰していく」この3つです!
紹介した勉強法を実践すれば、文系数学を得意科目にすることも夢ではありません。
地道な努力で力をつけ、合格をつかみとりましょう!

この記事を書いた人
15084584
現役で東京大学 文科I類に合格しました。趣味は声楽で、8歳から10年やっていました。バドミントンのサーブが打てません。 得意科目は英語と数学で、国公立対策の記事を中心に執筆しています。勉強に悩んでいる方のお役に立てれば幸いです。

関連するカテゴリの人気記事

14930700

【文系大学受験】数学問題集おすすめ一覧〜センターから東大受験まで〜

14953973

数学の参考書・問題集の使い方!【医学部・旧帝大受験生向け】

15673721

数学が苦手な私が現役で東京大学理科一類に合格した数学勉強法

14641153

数学の勉強法!3つのステップで苦手な数学を得意にしよう

14926323

数学3の勉強法!微分積分の苦手を克服して早慶MARCH理工学部へ!

15379060

数学記述問題対策!答案の書き方のコツとおすすめ参考書

関連するキーワード

スマホアプリで
学習管理をもっと便利に
Foot bt appstore
Foot bt googleplay